Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

Identifieur interne : 001328 ( Main/Exploration ); précédent : 001327; suivant : 001329

Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

Auteurs : Samantha S. Stutz [États-Unis] ; Jeremiah Anderson [États-Unis] ; Rachael Zulick [États-Unis] ; David T. Hanson [États-Unis]

Source :

RBID : pubmed:28575237

Descripteurs français

English descriptors

Abstract

High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment.

DOI: 10.1093/jxb/erx155
PubMed: 28575237
PubMed Central: PMC5853528


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.</title>
<author>
<name sortKey="Stutz, Samantha S" sort="Stutz, Samantha S" uniqKey="Stutz S" first="Samantha S" last="Stutz">Samantha S. Stutz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Jeremiah" sort="Anderson, Jeremiah" uniqKey="Anderson J" first="Jeremiah" last="Anderson">Jeremiah Anderson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zulick, Rachael" sort="Zulick, Rachael" uniqKey="Zulick R" first="Rachael" last="Zulick">Rachael Zulick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanson, David T" sort="Hanson, David T" uniqKey="Hanson D" first="David T" last="Hanson">David T. Hanson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28575237</idno>
<idno type="pmid">28575237</idno>
<idno type="doi">10.1093/jxb/erx155</idno>
<idno type="pmc">PMC5853528</idno>
<idno type="wicri:Area/Main/Corpus">001301</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001301</idno>
<idno type="wicri:Area/Main/Curation">001301</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001301</idno>
<idno type="wicri:Area/Main/Exploration">001301</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.</title>
<author>
<name sortKey="Stutz, Samantha S" sort="Stutz, Samantha S" uniqKey="Stutz S" first="Samantha S" last="Stutz">Samantha S. Stutz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Jeremiah" sort="Anderson, Jeremiah" uniqKey="Anderson J" first="Jeremiah" last="Anderson">Jeremiah Anderson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zulick, Rachael" sort="Zulick, Rachael" uniqKey="Zulick R" first="Rachael" last="Zulick">Rachael Zulick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanson, David T" sort="Hanson, David T" uniqKey="Hanson D" first="David T" last="Hanson">David T. Hanson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brassica napus (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Stems (metabolism)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Brassica napus (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Transpiration des plantes (MeSH)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brassica napus</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Brassica napus</term>
<term>Carbone</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Tiges de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28575237</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>68</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>2849-2857</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erx155</ELocationID>
<Abstract>
<AbstractText>High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment.</AbstractText>
<CopyrightInformation>© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stutz</LastName>
<ForeName>Samantha S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Jeremiah</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zulick</LastName>
<ForeName>Rachael</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanson</LastName>
<ForeName>David T</ForeName>
<Initials>DT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029688" MajorTopicYN="N">Brassica napus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Brassica napus</Keyword>
<Keyword MajorTopicYN="Y">CO2 efflux</Keyword>
<Keyword MajorTopicYN="Y">Populus deltoides</Keyword>
<Keyword MajorTopicYN="Y">carbon cycle</Keyword>
<Keyword MajorTopicYN="Y">internally transported CO2</Keyword>
<Keyword MajorTopicYN="Y">leaf respiration</Keyword>
<Keyword MajorTopicYN="Y">stem [CO2*]</Keyword>
<Keyword MajorTopicYN="Y">terrestrial carbon sink</Keyword>
<Keyword MajorTopicYN="Y">tunable diode laser absorbance spectroscopy</Keyword>
<Keyword MajorTopicYN="Y">xylem-transported CO2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28575237</ArticleId>
<ArticleId IdType="pii">3858257</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erx155</ArticleId>
<ArticleId IdType="pmc">PMC5853528</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2016 Nov;36(11):1409-1421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27126229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Dec;21(12):4662-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26179437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Jan;154(4):637-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17957386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Aug;35(8):840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26253839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22734462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Apr;30(4):469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jan;19(1):53-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 15;5:10975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26074373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1991 Mar;8(2):145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):375-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Apr;153(4):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25142926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Sep;36(9):1617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23496792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Jun;20(6):335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25911419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Sep;207(4):1026-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25898850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Aug;22(11):807-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Feb;54(383):861-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):745-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22882584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):35-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2011 Sep;108(2-3):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21567290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23057485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):483-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25800614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 10;525(7568):201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26331545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(3):614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):1003-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21434926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 May;202(3):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24716517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):3027-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27099373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Apr;67(9):2817-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27012285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):620-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Mar;197(4):1173-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23316716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 May;64(8):2129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23580747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):786-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 13;329(5993):774-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20705842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Nov;29(11):1447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):614-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Nouveau-Mexique</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Nouveau-Mexique">
<name sortKey="Stutz, Samantha S" sort="Stutz, Samantha S" uniqKey="Stutz S" first="Samantha S" last="Stutz">Samantha S. Stutz</name>
</region>
<name sortKey="Anderson, Jeremiah" sort="Anderson, Jeremiah" uniqKey="Anderson J" first="Jeremiah" last="Anderson">Jeremiah Anderson</name>
<name sortKey="Hanson, David T" sort="Hanson, David T" uniqKey="Hanson D" first="David T" last="Hanson">David T. Hanson</name>
<name sortKey="Zulick, Rachael" sort="Zulick, Rachael" uniqKey="Zulick R" first="Rachael" last="Zulick">Rachael Zulick</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001328 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001328 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28575237
   |texte=   Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28575237" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020